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Abstract 

Transverse phase space trajectories can be measured by using 
the TEVATRON beam position monitor in the standard turn by turn 
operation mode if a coherent betatron oscillation is excited by a 
dipole kick. The measurement of phase space coordinates is 
influenced by incoherent and coherent synchrotron oscillations 
and incoherent betatron oscillations. In order to investigate 
phase space trajectories in detail, all these effects must be 
understood quantitatively and if possible the measured data must be 
corrected. In this report the measuring and correction procedures 
will be investigated and the first measurements will be discussed. 

Introduction 

The TEVATRON beam position monitor system (BPM) /1,2,3/ is a 
powerful tool for beam diagnostics. In the Turn By Turn (TbT) mode, 
it allows one to measure the orbit of a bunch performing 
coherent betatron oscillations on 1024 successive turns at a single 
position monitor station. Such measurements provide not only 
information on coherent betatron oscillations but also on coherent 
and incoherent synchrotron oscillations, incoherent betatron 
oscillations and the strength and phase of linear coupling between 
the two transverse oscillation modes. 

It is also possible to combine the data of two next 
neighbouring monitors to obtain the phase trajectory of a 
coherent transverse motions which helps to understand the 
behaviour of the machine under normal running conditions and 
allows investigation of the machine under special experimental 
conditions in order to test predictions of machine calculations. 
In particular there is large interest in the impact of nonlinear 
fields on the motion of the beam and how well it is described 
by the models used. Phase space measurements are therefore part of 
the effort to improve and optimize the calculational tools for 
designing new machines. 

Because of the complexity of the motion under the influence 
of nonlinear fields ,phase space distortions have to be measured 
with a great accuracy in order to be useful in the sense mentioned 
above. It is therefore necessary to have a quantitative 
understanding of all the effects which influence the data from such 
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measurements, to isolate the nonlinear aspects of motion one is 
interested in. 

We will start with a description of the experimental set up 
and will first discuss the role of chromaticity correcting sextupole 
fields and nonlinear components of the dipole fields between the 
two position monitors on the measurement of the slope of a 
betatron trajectory. 

The coherent betatron amplitude as seen by TbT monitors is 
modulated, damped and dephased by the effect of incoherent motion 
within the particle bunch. 

First we examine the impact of coherent and incoherent 
synchrotron motion. As we will see, the incoherent synchrotron 
motion results in a beat of the coherent betatron amplitude if the 
chromaticity is not zero. 

Then incoherent betatron oscillations will be considered. If 
the particle tunes depend on the betatron amplitudes, the 
incoherent betatron motion gives rise to a relaxation of coherency 
which appears like a damping of coherent motion. 

Finally we consider the effect of linear coupling. To study 
basic problems it may be sensible to study the motion in one 
oscillation plane only. Spurious linear coupling will disurb this 
motion and and has to be taken into account for interpretation of 
the data. 

Having prepared our tool we will be able to discuss some of the 
measurements from the experimental program. 

Measuring Phase Space Trajectories Using 
Turn bv Turn Data 

The experimental set up for the phase space measurements is 
the standart turn by turn operation mode of the BPM 111: Two of 
the 24 service houses around the TEVATRON where the analog data 
from the 231 BP monitors get processed and digitized are 
equipped with a special processor which provides the turn by turn 
data. The TbT monitors can be chosen anywhere within the E2 or 
E4 section of the TEVATRON and may be horizontal or vertical or 
mixed. Suppose a coherent betatron oscillation is excited by a 
kick. This oscillation can be observed by the TbT monitors. We focus 
on the data of two next neighbouring monitors in the same 
plane and easily calculate the slope z' from the two position 
measurements z (z=x,y) at the two detectors (denoted by 'i' and 'f') 
by the linear transformation: 
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Z [ 1 T z”, [ 1 zi = Zf - Tll' zi 
" fir& initial T12 

"'(cos(~~)+aisin(~~)) 

T= (ocf-c&i)cos(A4)-(l+orfai)sin (A@) 
/2 

However this is only correct for very small oscillations for 
which the nonlinear forces between two monitors acting on the bunch 
are negligible. For large amplitudes the nonlinear fields may 
contribute to the transformation from one detector to the next one. 
The linear transformation has to be replaced by a nonlinear one 
which reads in the thin lens representation 

Z = ITTk(zk) ’ [ 1 f 1 
T1l T12 O 

k Tk = T21 T22 @(i?ik) 
0 0 1 

Here 0 is the nonlinear kick in the middle of a sextupole or a 
dipole magnet: 

0 = C bnm* x" ym; bnm: multipole coefficients 
n,m 

Then the transformation equation cannot be solved for z' in a 
closed form (in general) and has to be treated iteratively. 
Starting with 0 = 0, thus applying the linear transformation, the 
nonlinear kicks for the next iteration loop can be calculated. In 
this step, by applying the quasi linear transformation 

z (2) I [ 1 I f 
= 

the nonlinear kicks for the following step are calculated and 
so on. Assuming the average of measured multipoles /4/ in each of 
the 8 dipoles and taking the amount necessary for chromaticity 
correction for the 2 standard sextupoles between two horizontal 
detectors, the nonlinear transformation differs from the linear one 
by 8% if the amplitude is as large as 15 mm which is about the 
maximum allowed one in the TEVAmON (quench protection). Because the 
main contribution arises from the sextupoles (70%) the effect scales 
with the square of the amplitude and is therefore for amplitudes 
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below 8mm within the resolution limit of the detector system (which 
is zo.2 mm) 

However it should be mentioned that the nonlinear procedure is 
absolutely necessary for obtaining phase space trajectories at 
very low energies - at energies below 100 GeV (e.g. at deceleration 
experiments). Here with an oscillation amplitude of only 5 mm, the 
contribution of the persistent current sextupole components of the 
dipoles to z' is almost 20%. 

At this point I want to include a remark about averaging the 
data to remove the closed orbit distortion at the detectors and to 
center the phase space plots derived from turn by turn data. It is 
clear that with strong nonlinear contributions to the 
transformation from detector to detector, both the averaged data and 
the unaveraged data have to be transformed resulting in a z" 
and z" J for the closed orbit and z,z' for unaveraged data. 
Phase space plots may then be produced from (z-zO),(z'-z"'). 
It is not quite obvious that averaging always results in the 
closed orbit z" independently from what the phase space distortion 
is. It can however easily be demonstrated: 

Suppose the canonical variables are the particle betatron phase 
@ and the particle emittance E, both invariants if all forces are 
linear. Thus phase space trajectories e(a) (which correspond to 
(X' = xoc+x'@ over x1) are circles enclosing an area of 21reO. Suppose 
the nonlinear distortions are turned on adiabatically. Then the pha- 
se space trajectories get distorted and E becomes a complicated 
function of 0 . However because the time development of E(G) can 
be considered as a canonical transformation, the Poincare 
integral JdO ~(3) is invariant, thus /dW(W = 2TE0. The general 
description of of a phase space distortion which conserves the phase 
space area is a Fourier expansion of e about e" in a: 

E(4) = &O ( 1 + coo n=l ants01 cos(n4 +an) 1 
The coordinate z on successive turns can be written now as 

z(n) = z" + (2EOf3,P’2 

. 
I 

cos(4) + ; n n C a (cos((n+l)O+On)+cos((n-l)~+~n)) 

- & C, nranan, I (cos((n+n'+l)O+~n+On,~+cos((n-n'+l)0+9,-!Q,~ 1 

+ z, n’ 

I ,n 
I, l *** 

1  

If all parts on the phase space trajectory are occupied with 
the same density by measured phase space coordinates, averaging over 
all z's thus averaging over all phases Q) always results in the 
closed orbit deviation z" no matter how complex or how large the 
distortion or what the phase of the distortion will be. 
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Influence of Svnchrotron Oscillations on Turn by Turn Data 

In this section we will discuss the impact of coherent and in- 
coherent synchrotron oscillations on a coherent S-tron oscillation. 

A coherent synchrotron oscillation will be visible on turn by 
turn data if the dispersion at the turn by turn monitor is not zero. 
Assuming a harmonic coherent synchrotron oscillation the TbT data 
are described by : 

x(n) = x0 + D ec 
with 

x s cos(ZffQin + 0: ) 

Qfr E; ,@E coherent synchrotron tune, amplitude, phase 
Dx value of the dispersion function at the monitor 

Such oscillations are observed often at injection 
a consequence of momentum 

baiam or a detuning of the rf 
or p~~~yerrors of the injected 

frequency. If there is a momentum 
error, the oscillation observed on TbT is cosine-like and sine- 
like for a phase or frequency error. Injection phase errors excite 
sine like synchrotron oscillations. A momentum error causes a cos- 
like synchtrotron oscillations whereas an rf frequency error has 
the form 1-cos(2rQ n). Momentum errors and rf frequency errors 
can only be distinguished knowing the on energy closed orbit 
deviation at the TbT detector. Fig 1 shows a TL>T measurement made 
at TEVATRON injection. The synchrotron oscillation was exited in 
this case by a momentum error. 

tUlY--lS 
b 

fig 1. Example for a Coherent Synchrotron Oscillation 
as Seen by the Turn by Turn Monitor 

An incoherent sychrotron oscillation leads to a dilution of 
the coherent betatron oscillation. However after one synchrotron 
cycle coherency gets restored. The phenomenon can be described in a 
closed form assuming a gaussian energy spread in the bunch and 
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assuming the incoherent oscillation to be harmonic. The amplitude of 
a single particle in a bunch performing a coherent betatron 
oscillation about the closed orbit may then be written as 

x(n) = x0 cos ( 2nQxn + 0, + 2W*$lAQk ) 

with n number of completed turns 
#X 

betatron phase ii" 
betatron amplitude 

x betatron tune 

AQk tune change due to momentum error 

AQk = c*s*sin(2rQs*k + qs) 

&Ag, = ~*s*sin(nQsn)~cos(rQs(n+l)+@sJ / sin(rQs) 

with Q,, Q,, E incoherent synchrotron tune, phase and amplitude 
5 chromaticity AQ / (Ap/p) 

Different particles differ by their incoherent synchrotron 
amplitude and phase. Because the beam position monitor essentially 
accumulates contributions of different particles, the observable 
coherent oscillation is an integral over all momenta and phases: 

x(n) = ,z de Jixd@ x(n) l P (erg) VP: 
distribution function 

If the momentum distribution is gaussian and the phases are 
distributed uniformly, the momentum averaging can be evaluated in a 
closed form: 

x0 
1 

= xO(n)*z 
dQ) e- i (w&p)" cos2(xQs(n+1)++s) 

x0(n) = x0 l cos(29rQx+ix), undistorted B-tron oscillation 

Here so is the rms value of the momentum spread. Remains to 
carry out the phase averaging. The cos-term in the exponent can 
be expanded about l/2 leading to a power series in 
C&= 2r~e"~sin(nQsn)lJ2~sin(xQs) : 

12 --U 
X(n)= x(n)*e 2 l c 

[ 
(-l~n+m(~)(2~~~)(~)2n-m~ ,2n ] 

n,m n! 

The sum over n extends over even n only; the sum over m extends 
from m=O to m=n. In lowest orders one obtains for the expansion: 
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1 
l+16 

2r~s"sin(~Q n) 8 
+ 1474156 

12 
JZ*sin(rpiT 

For proton beams, a gaussian distribution of the momentum 
spread may not be appropriate. A parabolic distribution is probably 
more realistic: 

P (El = & ( 1 - (Eo)” ) 

In this case the betatron amplitude is given by: 

1 2r 
x(n) = 

x(n) 2r 
de 3 ( sin(i) / i3 - co& / i2 1 

ii 
0 

= 2x&O sin(rQsn)~cos(xQs(n+l)+Os) / sin (nQ,J 

in lowest order one obtains 

x(n) = x(n)** ( 1 - (-=$&&$)2 + . . . ) 

In both cases, the effect of an incoherent synchrotron oscilla- 
tion on the coherent betatron oscillation is a beat of the coherent 
amplitude with the incoherent synchrotron frequency. At half the 
synchrotron period the beat envelope has its minimum. The beat 
envelope is symmetric about this point. After one full synchrotron 
period the initial coherent amplitude gets completely restored. For 
the two distributions we considered, the amplitude beat factors 
differ numerically only little. 
Fig 2 shows the beat factor for a gaussian distribution in 
longitudinal phase space. The plot extends over full 
synchrotron period. The parameter a of the curve is a measu:e of the 
beat factor, OL = 2a*@"/J2*sin(rQ 1. up to 
described very well by the zero-d order term 

a = 0.5, the beat is 
c) 

beat H .-0.5aL 

If a gets as large as 1.5, the 2nd order term in the expansion 
contributes with 31.6% and the 4th order with still 2.5%. For such a 
the bottom of the beat envelope flattens and for very large values 
eventually forms a local maximum at half the synchrotron period 
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fig 2 Beat Factor Due to Incoherent Synchrotron 
Oscillations for Different Beat Strengths 
a=2~e0~/J2=sin(rQ) as a Function of Turns 

The above formula describe very well what is observed in turn 
by turn measurements. Fig 3 shows two examples of a coherent 
betatron oscillation influenced by incoherent momentum oscillations, 
which differ by their momentum spread by a factor of about 3. Note 
the small local minimum of the beta factor when beating is strong. 
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fig 3a Example of Turn by Turn Data with 
Moderate Beat Factor Due to Incoherent 
Synchrotron Oscillations 

fig 3b &ample of Turn by Turn Measurements with 
Strong Synchrotron Beat Factor 

If no other perturbations are present, it should be possible to 
evaluate two important machine 
measurements 

parameters from turn by turn 
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h the incoherent momentum spread in the beam 

* the incoherent synchrotron frequency, providing information 
about collective longitudinal self forces in a bunch 

Influence of Incoherent Betatron Oscillations 

If the betatron tune depends on the oscillation amplitude, 
one observes a damping of the coherent amplitudes. Such amplitude 
dependent tunes may be caused by transverse inner bunch forces 
(e.g. space charge effects ). However at TEVATRON energies, 
the only important contributions come from nonlinear fields 
around the machine. Far away from a resonance, the so called 
detuning terms are produced by the average value of even ordered 
multipole components ( octupoles, 12-poles etc) or higher 
order contributions from odd ordered multipoles (sextupoles, 
decapoles,.. 1 in the machine. The general form of the amplitude 
dependent tune is: 

even 

AQX =@xkx2) = 
n,m 

anm @jn" (e:)"" 

with 
fiXI 

fi, beta functions anm 'detuning' terms 

Because we cannot operate with extreme amplitudes when 
taking phase space plots, in practice only the lowest order 
terms are important in the expanston an: we ~il~s~;;nnt;~;coun~ 

' only terms proportional to x Y l 

particles are distributed gaussian in the bunch, the average value 
of the beam position over all individual particles characterized 
by oscillation amplitudes (x+xO),(y+yO) (x0 ,yO being the coherent 
amplitudes) can be written as the integral: 

x(n)= warty jzx/z-(cosbxn.E P,+ %(x+x012 + Ay(Y+Yo)23 + Q, ] 

l e 

- x2/2*; 
.  

e 

- y2/2tY; 

1 

This expression can be evaluated resulting in 
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x(n)=x”cos 2rn(Qx+ AQx)+#x+O(n) 

here 
AQ,, the tune change according to mean amplitudes x",yo 

a(n) = i 

--A 

AQ,= Axxo2+ yo2 Ay 
5xqx tanl(n,) + tanl(ny) + - + y'ly 5 

1+ < 1+n2 Y 
with q,= 4nAxnoi , Lx= 4xAxnoxxo, ditto for y 

uXr OY are horizontal and vertical rms beam sizes 

AX = 2 a2o/ B, A = Y all' 8, are the lowest order 
detuning terms 

These expressions show that the influence of a tune spread 
is essentially a damping of the coherent amplitude driven by 
the detuning terms and the beam size. There is also a change in the 
coherent betatron phase 8(n) because the desuning for x > x0 
is larger than for x < x0. This is due to the x dependence of the 
tune spread, thus the phase spread is nonsymmetric. It is 
necessary to correct for this phase error on the phase space 
plot unless the phase space trajectories are circles. One should 
notice that the impact of horizontal and vertical beam size on the 
damping factorizes into a horizontal and vertical contribution. It . also clear that the effect of sychrotron oscillations as 
&cribed in the preceding section also just contributes by 
another, factor, the beat factor described above. In fig 4 the 
damping factor is plotted over the number of completed turn 
for a case where the coherent amplitude x0 is the same as the beam 
size 0 ( which corresponds to a 4mm betatron oscillation at 
TEVATR6N injection). Fig 5 shows turn by turn data influenced by 
amplitude dependent tune spread. 
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fig 4 Form of the Damping Factor for x"=ox 
and a Detuning of AQx=O.OOO1 at x=ax 

beat77 pos;fi0~1 /mm 
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-5 
? 0 250 500 3.50 

tu-ns 
fig 5 Turn by Turn Measurement near the 3rd Integer 

Resonance with Damping of the Coherent 
Amplitude Due to Detuning Terms 
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This form of tge dyping allows in principle the evaluation of 
the beam radius a + o if the detuning terms are known. One could 
think of a strong %ero harmonic octupole excited for that purpose. 
In the same experiment it would be possible to measure the 
detuning terms by varying the coherent amplitude and measuring the 
betatron tune of the coherent oscillation. 

Influence of Linear Coupling 

The presence of linear coupling makes it difficult to 
investigate phase space trajectories in one oscillation plane. It is 
therefore desirable to study the particle motion in the eigenmodes 
of the coupled system rather than in the x and y plane. For the sake 
of completeness the transformation between eigenmodes I,11 and 
the machine coordinate system X?Y will be listed below 
according to reference/S/ 
In the case of linear coupling it is possible to preserve the 
familiar lattice functions @, a, y and Q) like in the uncoupled 
case. However for both x and y plane we have to add a second mode 
which vanishes for zero coupling : 

x = TG l COS(Q~~+ aI) + JeIIpxI; l COS(Q,~~+ oII) 
x’ = %G l COS(@,~+ i,, + JE~~~,~; l COS(Q~~~+ oII - ) 
Y = J”,e,; l cosmyI+ aI) + Je,,~,,; l cos(QyII+ 011) 
y’ = w l cos(4yI + Q + 

N 
’ JEIIYyII l cos(QyI* + %I) 

For zero coupling one finds: 
E* + ex i B* + Qx ; 8 x* +B x i Y,* + Y, i 4 xI -+ !lx(s) 
E**+ ey i Q**-) Py ; B,,I '$ y ; yy11+ yy ; 4 YII + +ay(s) 
B XII' @,I? yxI1' yy1 + 0 

Because the BPM system allows retrieval of the TbT data of 
all the horizontal and vertical monitors at the same time, 
it is straight forward to obtain the lattice functions and 
invariants for both modes from a fit to x(n) and y(n). This enables 
us to study the two eigenmodes independently as far as linear 
coupling is concerned. 
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If the phase space plot in one plane (e.g. x1 is performed only 
for points with the same phase in the other plane (y) ,the phase 
space plot results in an ellipse. The excentricity of the ellipse 
is a measure of the strength of the skew quadrupole representing the 
distortions around the ring. 
ratio R between 

Near the coupling resonance Q,=Q,, the 
maximum and average phase space radius 

R2 = (x2+~x.c4+xtfJ,2)max / (x2+(xa+x'8,2)average 

is related to the strength of the skew quadrupole klskew by 

The angle between the ellipse main axis and the x axis is 
the betatron phase difference between the monitor and this 
skew quadrupole. The same can be done for the other plane which 
provides full information about the skew quadrupoles necessary to 
correct for linear coupling. 

Phase Space Measurements 

Some phase 
be described as 

space measurements have been done so far which will 
an example. These measurements are also described in -. _ * . 

the context of other !l!EVATRON experiments for SSC related quesclons 
in ref/6/. 

According to a propososal of Sho Ohnuma and Don Edwards 171, a 
sextupoles around the ring are powered in two circuits such that 
they drive mostly 2nd and 3rd integer resonances (212 138 =integer) 
or by changing the sign of one of the circuits, thgy d%ve mainly 
lrst and 4th integer resonances (1,4Q =integer). 

Beam was injected in the machi#e and accelerated to 400 GeV. 
At flat top the sextupoles were switched on smoothly. The beam was 
then kicked in the horizontal plane applying a kick of -4Oyrad. 
Phase space trajectories were obtained by using the two horizontal 
beam position monitors at positions E22 and E24 or E24 and E26 
respectively. 

The original data were strongly influenced by both incoherent 
synchrotron and betatron oscillations. The tunes were well separated 
with Q = 19.33, .2S, Q 

1PneZr 
19.42. Thus E:;;;ting far from the 

coupliffg resonance, coupling be suppressed 
sufficiently, so that it had no impact on the data. 

Because the experiment was been performed at 400 GeV, the 
contribution of nonlinear fields between the position monitors 
turned out to be negligible. Their contribution to the evaluation of 
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the trajectory slopes have been found to be less than 0.2% using 
the measured multipole fields. This is much below the noise level 
seen on the phase space plots. 

The data handling was as follows: 
First an envelope function for each set of turn by turn by turn data 
has been determined by selecting the maxima and minima of the 
betatron oscillations. The beat and damping factors as derived above 
then have been fitted to the centered experimental envelope curve. 
Turn by turn data then get centered by subtracting the average 
value over all betatron oscillations and get scaled by the inverse 
fitted envelope function. Phase space points x x06+x'@ can now be 
determined by applying the transformation desiribed in the first 
section. Finally the phase space angle has to be corrected for the 
virtual phase change in the turn by turn data due to damping 
using the fitted values 
preceding sections). 

of damping parameters Q~,Q~,A~,A~ (see 

Fig 6 shows an example corrected and uncorrected turn by 
turn data. The phase correction is not yet applied. The sextupoles 
have been powered to drive the 4th integer resonance and the 
horizontal tune was adjusted to Q,=O.22. 

fig 6 Perturbed Turn by Turn Data and Appropriate 
Correction 



-16- 

Phase space trajectories are almost perfect circles. Fig7 shows 
a comparison of phase space data from the corrected and uncorrected 
turn by data. 
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fig 7 Uncorrected and Corrected Phase Space Plots 

When sextupoles are powered to drive the 3rd integer resonance, 
and the tune is moved near Q -19.33 phase space trajectories are 
distorted into a triangularxshape. Size and phase of the observed 
phase space distortion agree well with analytical estimates which 
has been made using perturbation theory /ref8/ 
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fig 8 Corrected Phase Space Plot near Third Integer Resonance 

Conclusion 

It has been demonstrated that turn by turn beam position 
monitor measurements can be used as a diagnostic tool to a much 
higher extent than it has been used up to now in the TEVATRON. 

In particular it is possible to obtain detailed information 
about the distortions of transverse phase space trajectories caused 
by nonlinear fields and to check the validity of computer simulation 
or analytical models of particle motion in the accelerator. 
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